Quaternionic Analysis
نویسنده
چکیده
1. Introduction. The richness of the theory of functions over the complex field makes it natural to look for a similar theory for the only other non-trivial real asso-ciative division algebra, namely the quaternions. Such a theory exists and is quite far-reaching, yet it seems to be little known. It was not developed until nearly a century after Hamilton's discovery of quaternions. Hamilton himself (1) and his principal followers and expositors, Tait (2) and Joly (3), only developed the theory of functions of a quaternion variable as far as it could be taken by the general methods of the theory of functions of several real variables (the basic ideas of which appeared in their modern form for the first time in Hamilton's work on quaternions). They did not delimit a special class of regular functions among quaternion-valued functions of a quaternion variable, analogous to the regular functions of a complex variable. This may have been because neither of the two fundamental definitions of a regular function of a complex variable has interesting consequences when adapted to quater-nions; one is too restrictive, the other not restrictive enough. The functions of a quater-nion variable which have quaternionic derivatives, in the obvious sense, are just the constant and linear functions (and not all of them); the functions which can be represented by quaternionic power series are just those which can be represented by power series in four real variables. In 1935, R. Fueter (4) proposed a definition of 'regular' for quaternionic functions by means of an analogue of the Cauchy-Riemann equations. He showed that this definition led to close analogues of Cauchy's theorem, Cauchy's integral formula, and the Laurent expansion (5). In the next twelve years Fueter and his collaborators developed the theory of quaternionic analysis. A complete bibliography of this work is contained in (6), and a simple account (in English) of the elementary parts of the theory has been given by Deavours (7). The theory developed by Fueter and his school is incomplete in some ways, and many of their theorems are neither so general nor so rigorously proved as present-day standards of exposition in complex analysis would require. The purpose of this paper is to give a self-contained account of the main line of quaternionic analysis which remedies these deficiencies, as well as adding a certain number of new results. By using the exterior differential calculus we are able to …
منابع مشابه
On the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملOn the Numerical Radius of a Quaternionic Normal Operator
We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternio...
متن کاملQuaternionic Analysis, Representation Theory and Physics
We develop quaternionic analysis using as a guiding principle representation theory of various real forms of the conformal group. We first review the Cauchy-Fueter and Poisson formulas and explain their representation theoretic meaning. The requirement of unitarity of representations leads us to the extensions of these formulas in the Minkowski space, which can be viewed as another real form of...
متن کاملAnti De Sitter Deformation of Quaternionic Analysis and the Second Order Pole
This is a continuation of a series of papers [FL1, FL2, FL3], where we develop quaternionic analysis from the point of view of representation theory of the conformal Lie group and its Lie algebra. In this paper we continue to study the quaternionic analogues of Cauchy’s formula for the second order pole. These quaternionic analogues are closely related to regularization of infinities of vacuum ...
متن کاملIntroducing Quaternionic Gerbes .
The notion of a quaternionic gerbe is presented as a new way of bundling algebraic structures over a four manifold. The structure groupoid of this fibration is described in some detail. The Euclidean conformal group RSO(4) appears naturally as a (non-commutative) monoidal structure on this groupoid. Using this monoidal structure we indicate the existence of a canonical quaternionic gerbe associ...
متن کاملQuaternionic linear algebra and plurisubharmonic functions of quaternionic variables
Quaternionic linear algebra and plurisubharmonic functions of quaternionic variables. Abstract We remind known and establish new properties of the Dieudonné and Moore determinants of quaternionic matrices. Using these linear algebraic results we develop a basic theory of plurisubharmonic functions of quaternionic variables. The main point of this paper is that in quaternionic algebra and analys...
متن کامل